Quadratic Trigonometric Equations

These notes are intended as a supplement of section 7.1 and 7.2 (p. $572-600$) in your workbook. You should also read the section for more complete explanations and additional examples.

Solving Quadratic Trigonometric Equations

Solve the following quadratic equations for x :
$4 x^{2}=1$
$x^{2}-3 x=0$
$x^{2}+2 x-3=0$

Solving quadratic trigonometric equations is done in virtually the same way. The trigonometric function is treated like a variable until it is isolated. Then, x can be solved for using the inverse trigonometric functions.

Example 1

Solve the equation $4 \sin ^{2} x-3=0$ for all values of x in the interval $0 \leq x \leq 2 \pi$.

Example 2

Solve the equation $4 \cos ^{2} x+\cos x=0$ for all values of x in the interval $0 \leq x \leq 2 \pi$.

Example 3

Solve the equation $(\sin x-2)(\tan x+1)=0$ for all values of x in the interval $0 \leq x \leq 2 \pi$.

Example 4

Solve the equation $2 \sin ^{2} x-3 \sin x+1=0$ for all values of x in the interval $0 \leq x \leq 2 \pi$.

Homework: Supplemental Worksheet \#3

Supplemental Worksheet \#3

1. Solve the equation $2 \sin ^{2} x+\sin x=0$ over the interval $0^{\circ} \leq x \leq 360^{\circ}$.
2. Solve the equation $2 \sin ^{2} x-\sin x=0$ over the interval $0 \leq x \leq 2 \pi$.
3. Solve the following equations over the interval $\frac{\pi}{2} \leq x \leq \frac{3 \pi}{2}$.
a) $4 \cos ^{2} x=1$
b) $2 \cos ^{2} x-5 \cos x-3=0$
c) $2 \sin x+\sqrt{3}=0$
4. Show that the following is true:

$$
2 \cos ^{2} \frac{\pi}{6}-1=\cos ^{2} \frac{\pi}{6}-\sin ^{2} \frac{\pi}{6}
$$

5. If $4 \cos x+3=0$ and $\tan x>0$, find the value of $\sin x$.
6. Evaluate $\sin \left(\frac{-47 \pi}{2}\right) \cdot \cos (-47 \pi)$.
